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1. Introduction 

*The 𝑝-adic numbers introduced by the German 
mathematician Hensel (1897), are widely used in 
mathematics: in number theory, algebraic geometry, 
representation theory, algebraic and arithmetical 
dynamics, and cryptography. The p-adic numbers 
have been used applying fields with successfully 
applying in superfield theory of 𝑝-adic numbers by 
Vladimirov and Volovich (1984). In addition, the 𝑝-
adic model of the universe, the 𝑝-adic quantum 
theory, the 𝑝-adic string theory such as areas 
occurred in physics (Volovich, 1987; Vladimirov and 
Volovich, 1984).  

Throughout this paper, 𝑝 is a fixed odd prime 
number and by 𝑍𝑝; 𝑄𝑝  and 𝐶𝑝 we denote the ring of 

p-adic integers, the field of p-adic numbers and the 
completion of the algebraic closure of  𝑄𝑝, 

respectively. 

2. p-Adic gamma function  

Morita (1975) defined the 𝑝-adic gamma function 
𝛤𝑝  by the formula 

 
𝛤𝑝(𝑥) = lim

𝑛→𝑥
(−1)𝑛 ∏ 𝑗1≤𝑗<𝑛

(𝑗,𝑝)=1

  

 
for 𝑥 ∈ 𝑍𝑝, where n approaches x through positive 

integers. 
The 𝑝-adic gamma function 𝛤𝑝  has a great interest 

and has been studied by Diamond (1977), Baesky 
(1981), Boyarsky (1980), and others. The 
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relationship between some special functions and the 
𝑝-adic gamma function 𝛤𝑝  was investigated by Gross 

and Koblitz (1979), Cohen and Friedman (2008) and 
Shapiro (2012).  

Diamond (1977) and Schikhof (1984) determined 
the 𝑝-adic Euler constant 𝛾𝑝 is defined by the 

following formula: 
 

𝛾𝑝 =
𝛤′

𝑝(1)

𝛤𝑝(1)
= 𝛤′

𝑝(1) = −𝛤′
𝑝(0)                                               (1) 

  
It is clear that 𝛾𝑝 is an element of 𝑍𝑝 and has a 

limit representation in 𝑄𝑝  as 

 

𝛾𝑝 = lim
𝑛→∞

𝑝−𝑛 (1 − (−1)𝑝 𝑝𝑛!

𝑝𝑛−1!𝑝𝑝𝑛−1)  

 

for 𝑥 ∈ 𝑍𝑝, the symbol (𝑥
𝑛

) is defined by (𝑥
0
) = 1 and 

 

(𝑥
𝑛

) =
𝑥(𝑥−1)…(𝑥−𝑛+1)

𝑛!
                  𝑛 ∈ 𝑁 

 

The functions 𝑥 → (𝑥
𝑛

) ( 𝑥 ∈ 𝑍𝑝, 𝑛 ∈ 𝑁) form an 

orthonormal base of the space 𝐶(𝑍𝑝 → 𝑄𝑝 )with 

respect the norm ‖. ‖∞. This orthonormal base has 
the following property: 

 

(𝑥
𝑛

)
′

= ∑
(−1)𝑛−𝑗−1

𝑛−𝑗
(𝑥

𝑗
)𝑛−1

𝑗=0                                                              (2) 

 
Mahler (1958) introduced an expansion for 

continuous functions of a 𝑝-adic variable using 
special polynomials as binomial coefficient 
polynomial. Means that for any 𝑓 ∈ 𝐶(𝑍𝑝 → 𝑄𝑝), 

there exist unique elements 𝑎0, 𝑎1, … , 𝑎𝑛 of  𝐶𝑝  such 

that 𝑓(𝑥) = ∑ 𝑎𝑛(𝑥
𝑛

),∞
𝑛=0  (𝑥 ∈ 𝑍𝑝).  

The base {(𝑥
𝑛

): 𝑛 ∈ 𝑁} is called Mahler base of the 

space 𝐶(𝑍𝑝 → 𝑄𝑝), and the elements {𝑎𝑛: 𝑛 ∈ 𝑁} in 
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𝑓(𝑥) = ∑ 𝑎𝑛(𝑥
𝑛

)∞
𝑛=0  are called Mahler coefficients of 

𝑓 ∈ 𝐶(𝑍𝑝 → 𝑄𝑝). 

The Mahler expansion is a common method of 
representing the continuous functions from 𝑍𝑝 into a 

complete extension field of 𝑄𝑝  (Conrad, 1997). In 

order to compute Volkenborn integral of 𝛤𝑝  

efficiently for an arbitrary 𝑥 ∈ 𝑍𝑝 we will use the 

following Mahler expansions. The Mahler expansion 
of the 𝑝 -adic gamma function 𝛤𝑝  and its Mahler 

coefficients are determined by the following 
propositions: 

 
Proposition 1: Let 

 
𝛤𝑝(𝑥 + 1) = ∑ 𝑎𝑛(𝑥

𝑛
) ∞

𝑛=0   (𝑥 ∈ 𝑍𝑝)  

 
and then 

 

exp (𝑥 +
𝑥𝑝

𝑝
)

1−𝑥𝑝

1−𝑥
= ∑ 𝑎𝑛

(−1)𝑛+1

𝑛!
𝑥𝑛∞

𝑛=0    (𝑥 ∈ 𝐸)   

 
holds where E is the region of convergence of the 

power series  ∑
𝑥𝑛

𝑛!
. 

 
Proposition 2: Let 𝑝 be a prime number. Define 
rational numbers 𝑐𝑛 by the power series expansion 
(Villegas, 2007) 

 

exp (𝑥 +
𝑥𝑝

𝑝
) = ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0   

 
then for 0 ≤ 𝑎 < 𝑝 and  𝑥 ∈ 𝑍𝑝 

 
𝛤𝑝(−𝑎 + 𝑝𝑥) = ∑ 𝑝𝑘𝑐𝑎+𝑝𝑘(𝑥)𝑘∞

𝑘=0   

 
where (𝑥)𝑘 = 𝑥(𝑥 + 1) … (𝑥 + 𝑘 − 1). 

 
note that 

 
 (𝑥)𝑘 = (−1)𝑘(−𝑥

𝑘
)𝑘!. 

3. Volkenborn integral 

The Volkenborn integral was introduced in 1971 
by Volkenborn in his Ph.D. dissertation and 
subsequently in the set of twin papers (Volkenborn, 
1972; Volkenborn, 1974), a more recent treatment of 
the subject can be found in (Robert, 2000). The 
Volkenborn integral can be used for defining the 𝑝-
adic log gamma functions, the 𝑝-adic Bernoulli 
numbers and polynomial, the 𝑝-adic zeta and L-
functions. Special numbers and polynomials have 
played role in almost all areas of mathematics, in 
mathematical physics, computer science, 
engineering problems and other areas of science 
(Araci and Açikgöz, 2015; Kim et al., 2013a; 2013b; 
Simsek and Yardimci, 2016; Simsek, 2014; Srivastava 
et al., 2012). 

The indefinite sum of a continuous function 
𝑓: 𝑍𝑝 → 𝐶𝑝 is the continuous function 𝑆𝑓 

interpolating  
 

𝑛 → ∑ 𝑓(𝑗)𝑛−1
𝑗=0     (𝑛 ∈ 𝑁)  

 
instead of 𝑆𝑓  (𝑥 ∈ 𝑍𝑝) we can write 

 
lim
𝑛→𝑥

∑ 𝑓(𝑗)𝑛−1
𝑗=0 = ∑ 𝑓(𝑗)𝑥−1

𝑗=0   

 
see Schikhof (1984) and Robert (2000).  

Let 𝑓 be a function from 𝐶1(𝑍𝑝 → 𝑄𝑝). The 

Volkenborn integral of 𝑓 on 𝑍𝑝 is defined by the 

formula 
 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑍𝑝

lim
𝑛→∞

𝑝−𝑛 ∑ 𝑓(𝑗)
𝑝𝑛−1
𝑗=0 = (𝑆𝑓)′(0)  

 

For any 𝑓 ∈ 𝐶1(𝑍𝑝 → 𝐶𝑝)., Volkenborn integral 

has following properties: 
 

∫ 𝑓(𝑥 + 1)𝑑𝑥
𝑍𝑝

− ∫ 𝑓(𝑥)𝑑𝑥 =
𝑍𝑝

𝑓′(0)                             (3) 

∫ 𝑓(𝑥 + 𝑠)𝑑𝑥 =
𝑍𝑝

(𝑆𝑓)′(𝑠)                                                   (4) 

∫ 𝑓(−𝑥)𝑑𝑥 =
𝑍𝑝

∫ 𝑓(𝑥 + 1)𝑑𝑥
𝑍𝑝

                                       (5) 

 

The Volkenborn integral in terms of the Mahler 

coefficients: Let 𝑓 = ∑ 𝑎𝑛(𝑥
𝑛

)∞
𝑛=0 ∈ 𝐶1(𝑍𝑝 → 𝐶𝑝). 

Then 
 

 ∫ 𝑓(𝑥)𝑑𝑥
𝑍𝑝

= ∑ 𝑎𝑛
(−1)𝑛

𝑛+1
∞
𝑛=0                                       (6) 

4. Results and discussion 

In the present work we obtain the Volkenborn 
integral of 𝑝-adic gamma function and a new 
representative for the 𝑝-adic Euler constant. 

In what follows, we indicate the Volkenborn 
integral with Mahler coefficients of 𝑝-adic gamma 
function:  

 
Theorem 1: The equality holds: 

 

∫ 𝛤𝑝(𝑥 + 1)𝑑𝑥 = ∑ 𝑎𝑛
(−1)𝑛

𝑛+1
∞
𝑛=0𝑍𝑝

  

 
for 𝑥 ∈ 𝑍𝑝, where 𝑎𝑛  is defined by Proposition 1 

 
Proof: Let 𝑥 ∈ 𝑍𝑝, 𝑛 ∈ 𝑁. From Proposition 1 and 

(6), we get  
 

∫ 𝛤𝑝(𝑥)𝑑𝑥 = ∫ ∑ 𝑎𝑛
∞
𝑛=0 (𝑥

𝑛
)

𝑍𝑝
𝑑𝑥 =

𝑍𝑝
∑ 𝑎𝑛

∞
𝑛=0 ∫ (𝑥

𝑛
)𝑑𝑥

𝑍𝑝
  

 
or  

 

∫ 𝛤𝑝(𝑥 + 1)𝑑𝑥 = ∑ 𝑎𝑛
(−1)𝑛

𝑛+1
∞
𝑛=0𝑍𝑝

.  

 
Theorem 2: For 𝑥 ∈ 𝑍𝑝 and 𝑛 ∈ 𝑁,  

 

∫ 𝛤𝑝(𝑥)𝑑𝑥 = 𝛾𝑝 + ∑ 𝑎𝑛
(−1)𝑛

𝑛+1
∞
𝑛=0𝑍𝑝

 . 

 

Proof: By using Eq. 3 we get  
 

∫ 𝛤𝑝(𝑥 + 1)𝑑𝑥
𝑍𝑝

− ∫ 𝛤𝑝(𝑥)𝑑𝑥 =
𝑍𝑝

𝛤𝑝
′(0)                              (7) 
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 If we substitute (1) and Theorem 1 in Eq. 7 then 
we obtain that  

 

∑ 𝑎𝑛
(−1)𝑛

𝑛+1
∞
𝑛=0 − ∫ 𝛤𝑝(𝑥)𝑑𝑥 = −𝛾𝑝.

𝑍𝑝
  

 
Proof of the theorem is finished. 

 
Theorem 3: For all  𝑥, 𝑠 ∈ 𝑍𝑝, the following identity: 

 

∫ 𝛤𝑝(𝑥 + 𝑠)𝑑𝑥 = ∑ ∑ 𝑎𝑛
(−1)𝑛−𝑗

𝑛+1−𝑗

𝑛
𝑗=0 (𝑠−1

𝑗
)∞

𝑛=0𝑍𝑝
  

 
is true. 

 
Proof: From Eq. 4 and Proposition 1, we get  

 

∫ 𝛤𝑝(𝑥 + 𝑠)𝑑𝑥 = (∑ 𝑎𝑛𝑆 (𝑥−1
𝑗

)∞
𝑛=0 )

′

𝑍𝑝
(𝑠)  

 

Note that 𝑆(𝑥
𝑛

) = ( 𝑥
𝑛+1

). Therefore, we get 

 

∫ 𝛤𝑝(𝑥 + 𝑠)𝑑𝑥 = (∑ 𝑎𝑛(𝑥−1
𝑛+1

)∞
𝑛=0 )

′

𝑍𝑝
(𝑠)  

 
By using (2) we can write as following 

 

∫ 𝛤𝑝(𝑥 + 𝑠)𝑑𝑥 = (∑ 𝑎𝑛 ∑
(−1)𝑛−𝑗

𝑛+1−𝑗

𝑛
𝑗=0 (𝑥−1

𝑗
)∞

𝑛=0 )
𝑍𝑝

(𝑠)  

 
or 

 

∫ 𝛤𝑝(𝑥 + 𝑠)𝑑𝑥 = ∑ ∑ 𝑎𝑛
(−1)𝑛−𝑗

𝑛+1−𝑗

𝑛
𝑗=0 (𝑠−1

𝑗
) .∞

𝑛=0𝑍𝑝
  

 
In the case s= 0 in Theorem 3 we obtain the 

following corollary 
 

Corollary 1: Let  𝑥 ∈ 𝑍𝑝 . The following equality 

holds: 
 

∫ 𝛤𝑝(𝑥)𝑑𝑥 = ∑ ∑ 𝑎𝑛
(−1)𝑛

𝑛+1−𝑗

𝑛
𝑗=0

∞
𝑛=0𝑍𝑝

  

 
or 

 

∫ 𝛤𝑝(𝑥)𝑑𝑥 = ∑ ∑ 𝑎𝑛
(−1)𝑛

𝑗+1

𝑛−1
𝑗=0

∞
𝑛=1𝑍𝑝

  

 
From Theorem 2 and Corollary 1 we can write a 

new representation for the 𝑝-adic Euler constant: 
 

Corollary 2: The 𝑝-adic Euler constant have the 
expansion (Schikhof, 1984): 

 

𝛾𝑝 = ∑ ∑ 𝑎𝑛
(−1)𝑛

𝑗+1

𝑛−1
𝑗=0

∞
𝑛=1 + ∑ 𝑎𝑛

(−1)𝑛+1

𝑛+1
∞
𝑛=0   

 
Note that 𝑓 ∈ 𝐶1(𝑍𝑝 → 𝑄𝑝),  𝑗 ∈ {0,1, … , 𝑝 − 1}, 

 

∫ 𝑓(𝑗 + 𝑥)𝑑𝑥 = 𝑝−1 ∫ 𝑓(𝑗 + 𝑝𝑥)𝑑𝑥
𝑍𝑝𝑝𝑍𝑝

   

 
Theorem 4: If 𝑥 ∈ 𝑝𝑍𝑝then 

 

∫ 𝛤𝑝(𝑥)𝑑𝑥
𝑝𝑍𝑝

= − ∑ 𝑐𝑝𝑘
𝑘!𝑝𝑘−1

𝑘(𝑘+1)
∞
𝑘=0   

where 𝑐𝑝𝑘 is defined by Proposition 2. 

 
Proof: Assume that |𝑥|𝑝 < 1. We have 

 

∫ 𝛤𝑝(𝑥)𝑑𝑥
𝑝𝑍𝑝

= 𝑝−1 ∫ 𝛤𝑝(𝑝𝑥)𝑑𝑥
𝑍𝑝

  

 
From Proposition 2,  

 

∫ 𝛤𝑝(𝑥)𝑑𝑥
𝑝𝑍𝑝

= 𝑝−1 ∫ ∑ 𝑝𝑘𝑐𝑝𝑘(𝑥)𝑘∞
𝑘=0 𝑑𝑥

𝑍𝑝
=

∑ 𝑝𝑘−1𝑐𝑝𝑘
∞
𝑘=0 ∫ (𝑥)𝑘𝑑𝑥

𝑍𝑝
  

 
or 

 

∫ 𝛤𝑝(𝑥)𝑑𝑥
𝑝𝑍𝑝

= ∑ 𝑝𝑘−1𝑐𝑝𝑘
∞
𝑘=0 𝑘! (−1)𝑘 ∫ (−𝑥

𝑘
)𝑑𝑥

𝑍𝑝
  

 
using Eq. 5, we have 

 

∫ 𝛤𝑝(𝑥)𝑑𝑥
𝑝𝑍𝑝

= ∑ 𝑝𝑘−1𝑐𝑝𝑘
∞
𝑘=0 𝑘! (−1)𝑘 ∫ (𝑥+1

𝑘
)𝑑𝑥

𝑍𝑝
  

 

now compute ∫ (𝑥+1
𝑘

)𝑑𝑥
𝑍𝑝

: 

 

∫ (𝑥+1
𝑘

)𝑑𝑥
𝑍𝑝

= lim
𝑥→0

(𝑥+1
𝑘+1

)

𝑥
= lim

𝑥→0

𝑥+1

𝑘+1

𝑥

𝑘
(𝑥−1

𝑘−1)

𝑥
=

(−1)𝑘−1

𝑘(𝑘+1)
.  

 
so, we obtain 

 

∫ 𝛤𝑝(𝑥)𝑑𝑥
𝑝𝑍𝑝

= ∑ 𝑝𝑘−1𝑐𝑝𝑘
∞
𝑘=0 𝑘! (−1)𝑘 (−1)𝑘−1

𝑘(𝑘+1)
=

− ∑
𝑝𝑘−1𝑐𝑝𝑘𝑘!

𝑘(𝑘+1)
∞
𝑘=0   

 
Recall that 𝑇𝑝 = 𝑍𝑝\𝑝𝑍𝑝. From Theorem 2 and 

Theorem 4, we obtain following corollary. 
 

Corollary 3: Let 𝑥 ∈ 𝑇𝑝. Then 

 

∫ 𝛤𝑝(𝑥)𝑑𝑥
𝑇𝑝

= 𝛾𝑝 + ∑ 𝑎𝑛
(−1)𝑛

𝑛+1
∞
𝑛=0 + ∑

𝑝𝑘−1𝑐𝑝𝑘𝑘!

𝑘(𝑘+1)
∞
𝑘=0   

 
where 𝑎𝑛 is defined by Proposition 1 and 𝑐𝑝𝑘 is 

defined by Proposition 2. 

5. Conclusion 

In this paper, we study the 𝑝-adic Gamma 
function and the following results are obtained: 
 
1. The Volkenborn integral of the 𝑝-adic Gamma 

function is evaluated. 
2. For the 𝑝-adic Euler constant which has important 

role in many areas, useful representation is 
derived. 
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